
www.manaraa.com

C and C++ Tips
Robert Seacord, CERT Secure Coding Standards. https://www.securecoding.cert.org/

1) Validate input from all untrusted data sources.

2) Compile code using the highest warning level available for your compiler and eliminate warnings by
modifying the code.

3) Create a software architecture and design your software to implement and enforce security policies.

4) Keep the design as simple and small as possible.

5) Base access decisions on permission rather than exclusion.

6) Adhere to the principle of least privilege.

7) Sanitize all data passed to complex subsystems such as command shells, relational databases, and
o!-the-shelf components.

8) Manage risk with multiple defensive strategies, so that if one layer of defense turns out to be
inadequate, another layer of defense can prevent a security "aw from becoming an exploitable
vulnerability and/or limit the consequences of a successful exploit.

9) Use e!ective quality assurance techniques.

10) Develop and/or apply a secure coding standard for your target development language and platform.

Presents Top 35 Secure Development Techniques
A set of simple and repeatable

programming techniques so that
developers can actually apply them

consistently, without years of training.

Java/JEE Tips

1) Perform data validation with a security API such as OWASP ESAPI
See the following paper for some examples that use ESAPI for data validation:
http://www.sans.org/reading_room/application_security/protecting_web_apps.pdf

2) Use PreparedStatements with properly bound variables
BAD:

!"#$%&'()*#+','-!./.01'$2'3456')7*#7'89.4.')7*#$2',':;'<')7*#$2'<'-=;>

?#*@A#*2!"A"*B*%"'7"B"','CD%E@#*@A#*!"A"*B*%"F()*#+G>

4*7)H"!*"'#7','7"B"E*I*C)"*J)*#+FG>

GOOD:
!"#$%&'()*#+','-!./.01'$2'3456')7*#7'89.4.')7*#$2','K;>

?#*@A#*2!"A"*B*%"'7"B"','CD%E@#*@A#*!"A"*B*%"F()*#+G>

()*#+E7*"!"#$%&FLM')7*#$2G>

4*7)H"!*"'#7','7"B"E*I*C)"*J)*#+FG>

3) Don’t perform security-critical operations based on data from HttpServletRequest
parameters

BAD:
!"#$%&'#DH*','#*()*7"E&*"?A#AB*"*#F-#DH*;G>

$N'F#DH*'O,'%)HH'PP'#DH*E*()AH7F-A2B$%;G'Q

!!!!""!#$!%#&'(!)*+,

R

4) Use a framework like Spring Security or ESAPI for authentication and authorization
See the following sites for additional information:

http://static.springsource.org/spring-security

http://www.owasp.org/index.php/ESAPI

5) Don’t use instance variables in Servlets
BAD:

@)SH$C'CHA77'TA2!*#UH*"'*I"*%27'9""@!*#UH*"'Q

''''@#$UA"*'!"#$%&'@#$BA#+V*+>''WW'2D%="'2D'"X$7O

''''EEE

R

6) Use SecureRandom instead of Random
BAD:

4A%2DB'#A%2DB','%*Y'4A%2DBFG>

S+"*'S+"*7Z[','%*Y'S+"*ZL\[>

#A%2DBE%*I"T+"*7FS+"*7G>

GOOD:
!*C)#*4A%2DB'#A%2DB','%*Y'!*C)#*4A%2DBFG>

S+"*'S+"*7Z[','%*Y'S+"*ZL\[>

#A%2DBE%*I"T+"*7FS+"*7G>

.NET Tips
Jason D. Montgomery, Sr. Software Specialist/Security Specialist, Principal, ATGi (atgi.com)

David Rice, Director, The Monterey Group; Director, Policy Reform, U.S. Cyber Consequences Unit

1) For data validation, follow the Constrain, Reject/Replace, Assign (to local variable) paradigm.

2) Use a validation abstraction layer to make validating data easier and more consistent.

3) Validate data from any and all untrusted sources - including cookies, URL parameters,
Form Fields, HTTP Headers, as well as inputs from external systems.

Code example combined for first three items above:
7"#$%&'7A%$"$]*2/A7"^AB*','%)HH>

$N'F_AH$2A"$D%`"$H$"+E1#+_AH$2A"*a%2!A%$"$]*/A7"^AB*F"I"/A7"^AB*E1*I"M'D)"'
7A%$"$]*2/A7"^AB*GG'Q

!!!""!-+../))0!+)/!)%('*'1/#2%)*3%&/4!3/5/6!+)/!*7*2%)*3%&/48/7*!%9%'(!:)'&;<'=/)!
CD2*'#*U$*YGE

R'*H7*'Q

'''WW'3A$H*2M'^._.4'2$7@HA+'"I"/A7"^AB*E1*I"'SACb'"D')7*#'D#')7*'A&A$%'$%'CD2*'

R

WW'0*%"#AH$]*'_AH$2A"$D%

@)SH$C'CHA77'_AH$2A"$D%`"$H$"+'Q

'''@)SH$C'7"A"$C'SDDH'1#+_AH$2A"*a%2!A%$"$]*/A7"^AB*F7"#$%&')%7A%$"$]*2/A7"^AB*M'

''D)"'7"#$%&'7A%$"$]*2/A7"^AB*G'Q

''''WW'3A$H'!*C)#*H+

''''SDDH'7_AH2','NAH7*>

''''WW'!"*@'Lc'0D%7"#A$%E'`7*'YX$"*H$7"7M'%D"'SHACbH$7"7E

'''''$N'F4*&*IEd76A"CXF)%7A%$"$]*2/A7"^AB*M'-eZAf]=[<g;M'4*&*I5@"$D%7Ed&%D#*0A7*GG'Q

''''''WW'!"*@'hc'4*@HAC*M'7)S7"$")*'A%+'@D"*%"$AH'SA2'CXA#AC"*#7'Y$"X'

'''''''WW'7DB*"X$%&'7AN*'ND#'7"D#A&*E'.E&EM'"X*'"$Cb':'CXA#'Y$"X'"X*'@$@*'i'CXA#

'''''')%7A%$"$]*2/A7"^AB*',')%7A%$"$]*2/A7"^AB*E4*@HAC*F:j==M':i=G>

''''''7_AH2','"#)*>

''''''WW'kE'a77$&%

''''''7A%$"$]*2/A7"^AB*',')%7A%$"$]*2/A7"^AB*>

''''R'*H7*'Q

''''''WW'0DBB)%$CA"*'$%"*%"'"D'X)BA%7'#*A2$%&'"X*'CD2*E

''''''7_AH2','NAH7*>

''''''7A%$"$]*2/A7"^AB*','%)HH>

''''R

''''#*")#%'7_AH2>

''R

R

4) Use Microsoft’s AntiXSS library to counter XSS attacks. Encode all untrusted output.
Available AntiXSS methods: 9"BH.%CD2*FGM'9"BHa""#$S)"*.%CD2*FGM'lAUA7C#$@".%CD2*FGM'
_$7)AHTA7$C!C#$@".%CD2*FGM'`#H.%CD2*FGM'mBH.%CD2*FGM'mBHa""#$S)"*.%CD2*FG.

n2$Uo8*HCDB*M'np,'a%"$m77E9"BH.%CD2*F4*()*7"E3D#BZ-3)HH^AB*;[G>'ponW2$Uo

5) Use Anti-forgery Tokens in ASP.NET MVC 1.0 or include Session Key tokens in all Form
POSTs to help protect against Cross-Site Request Forgery (CSRF) Attacks.

Example for ASP.NET*:
@#D"*C"*2'DU*##$2*'UD$2'5%d%$"F.U*%"a#&7'*G'Q

''$N'F`7*#Ed2*%"$"+Ed7a)"X*%"$CA"*2G'Q

''''"X$7E_$*Y!"A"*`7*#V*+','`7*#Ed2*%"$"+E^AB*>

''R

''SA7*E5%d%$"F*G>

R

* Make sure to set n@A&*7'*%ASH*_$*Y!"A"*6AC,;"#)*;'Wo in the >/?4.$(=9 or in the q?A&* directive
to guarantee the _$*Y!"A"* isn’t modified by an attacker. Avoid HTTP GET Requests that use Query
Parameters to perform work.

6) Use parameterized SQL queries or LINQ to SQL when querying databases to protect
against SQL Injection
!(H0DBBA%2'CB2','%*Y'!(H0DBBA%2F-!./.01'`7*#^AB*'89.4.'`7*#%AB*','q)7*#^AB*'a^r'
?A77YD#29A7X','q@A779A7X;G>

CB2E?A#AB*"*#7Ea22F-q)7*#^AB*;M'!(HrS1+@*E_A#0XA#M'hsGE_AH)*','7A%$"$]*2`7*#^AB*>

CB2E?A#AB*"*#7Ea22F-q@A77YD#2;M'!(HrS1+@*E_A#0XA#M'hsGE_AH)*','@A77YD#29A7X>

WW'EEE*"CE

7) Determine how you will make software security visible to development teams, for
example Risk Density metrics

These metrics, while imperfect, can help provide a measure of the risk associated with code. Risk
Density is calculated by dividing the number of high, medium, and low risk defects by the number
of lines of code. Code reviews can provide the data points to capture this metric.

Risk Density = Risk Level / LoC

Examples:

10 Low-risk defects per 1000 lines of code

20 High-risk defects per 1000 lines of code

LoC - Lines of code (excludes comments, spaces, etc.)

Risk Level - High, Medium, or Low, determined by your organizations’ standards and policies for
code security.

8) Design windows and web applications that conform to the Principle of Least Privilege.
Some indicators that this principal is being violated by the software:

 + Granted Administrative permissions

 + Granted privileges in the computer’s local Security Policy (e.g. Act as Part of the Operating System)

PHP Tips
Johannes Ullrich, PhD, Chief technology officer of the Internet Storm Center.

1) Use prepared SQL statements.
BAD:

B+7(Ht2St()*#+F-7*H*C"'$2'N#DB')7*#7'YX*#*')7*#%AB*,=g`7*#%AB*=;G

BETTER:
g!"B",grTfo@#*@A#*F-7*H*C"'$2'N#DB')7*#7'YX*#*')7*#%AB*,K;G>

g!"B",grTfoS$%2t@A#ABF-7;Mg`7*#%AB*G>

g!"B"fo*I*C)"*FG>

2) Enable and con#gure Suhosin
See http://www.hardened-php.net/suhosin for details about Suhosin.

3) Extract data from super globals inside validation functions only

4) Replace “print” statements with a wrapper function escaping HTML tags like

5) Create a wrapper function to redirect users

6) Move include #les outside of the document root
This is a configuration choice. A typical directory layout would look as follows:

W7$"*W$%CH)2*''nf'$%CH)2*'@A"X

'''''WX"BH'''''nf'r50`6.^1t4551'

BAD:
g`7*#dr,gt?5!1Z:)7*#$2=[>

'''''$N'F'O'$7t$%"Fg`7*#drG'G'Q

'''''''''''g`7*#dr,s>

'''''R

BETTER:
'''''g`7*#dr,&*"t)7*#$2F:)7*#$2=G>

'''''N)%C"$D%'&*"t)7*#$2Fg%AB*G'Q

''''''''gUAH)*,gt?5!1Zg%AB*[>

''''''''$N'F'$7t$%"FgUAH)*G'G'Q

''''''''''''''''#*")#%'gUAH)*>

''''''''R

''''''''#*")#%'3a/!.>

'''''R

BAD:
@#$%"'gUAH)*>

BETTER:
7AN*tD)"FgUAH)*G>

N)%C"$D%'7AN*tD)"FgUAH)*G'Q

''''gUAH)*,X"BH*%"$"$*7FgUAH)*M.^1tJ`51.!M=`13fu=G>

''''@#$%"'gUAH)*>

R

BAD:
X*A2*#F-/DCA"$D%c'g%*YHDCA"$D%;G>

BETTER:
#*2$#Fg%*YHDCA"$D%M=*%"*#'#*A7D%'ND#'#*2$#*C"=G>

N)%C"$D%'#*2$#Fg%*YHDCA"$D%Mg#*A7D%G'Q

''''''''<$.%<<$9@+(.*'$(:A6/%)$(BC!"D!*$!?/!#/=(/#!D"

''''''''gH$%*7,@#*&t7@H$"F-WZj%j#[W;Mg%*YHDCA"$D%G>

''''''''X*A2*#F-/DCA"$D%c'-EgH$%*7G>

''''''''*I$"FG>

R'

“Personally, I favor coding in unstructured languages
like Perl and PHP for all the wrong reasons.”

-Johannes Ullrich, PhD

THE MOST TRUSTED NAME FOR
INFORMATION AND SOFTWARE SECURITY

Keys to Building
a Great Application

Security Program
S P R I N G 2 0 1 0 – 1 9 T H E D I T I O N

Top 35 Secure
Development Techniques

AND

Common Security Errors
in Programming

www.sans.org/whatworks

Principal Development
Techniques Editor:
Johannes Ullrich, PhD

Contributors:
Frank Kim
Jason D. Montgomery
David Rice
Robert Seacord
Rohit Sethi

See www.sans.org/top-cyber-security-risks to view entire report

This report uses current data from appliances and software
in thousands of targeted organizations to provide a reliable portrait of the attacks

being launched and the vulnerabilities they exploit.

PRIORITY ONE: Client-side software that remains unpatched

Waves of targeted email attacks, often called spear phishing, are exploiting client-side vulnerabilities in
commonly used programs such as Adobe PDF Reader, QuickTime, Adobe Flash, and Microsoft O!ce. This is
currently the primary initial infection vector used to compromise computers that have Internet access. Those
same client-side vulnerabilities are exploited by attackers who have infected visitors to insecure, but infected
trusted web sites. Because the visitors feel safe downloading documents from the trusted sites, they are easily
fooled into opening documents and music and video that exploit client-side vulnerabilities. Some exploits
do not even require the user to open documents. Simply accessing an infected website is all that is needed
to compromise the client software. The victims’ infected computers are then used to propagate the infection
and compromise other internal computers and sensitive servers incorrectly thought to be protected from
unauthorized access by external entities. In many cases, the ultimate goal of the attacker is to steal data from
the target organizations and also to install back doors through which the attackers can return for further
exploitation. On average, major organizations take at least twice as long to patch client-side vulnerabilities as
they take to patch critical operating system vulnerabilities.

PRIORITY TWO: Internet-facing Web sites that are vulnerable.

Attacks against Web applications constitute more than 60% of the total attack attempts observed on the
Internet. These vulnerabilities are being exploited widely to convert trusted web sites into malicious Web
sites serving content that contains client-side exploits. Web application vulnerabilities such as SQL injection
and Cross-Site Scripting "aws in open-source as well as custom-built applications account for more than 80%
of the vulnerabilities being discovered.

lead to massive Internet worms. Other than Con#cker/Downadup, no new major worms for OSs
were seen in the wild during the reporting period. Even so, the number of attacks against bu$er
over"ow vulnerabilities in Windows tripled from May-June to July-August and constituted over
90% of attacks seen against the Windows operating system.

discovering zero-day vulnerabilities, as measured by multiple independent teams discovering
the same vulnerabilities at di$erent times. Some vulnerabilities have remained unpatched for as
long as two years. There is a corresponding shortage of highly skilled vulnerability researchers
working for government and software vendors. So long as that shortage exists, the defenders
will be at a signi#cant disadvantage in protecting their systems against zero-day attacks. A large
decline in the number of “PHP File Include” attacks appears to re"ect improved processes used
by application developers, system administrators, and other security professionals.

Highest Priority Cyber Security Risks

www.manaraa.com

Common Security Errors in Programming
The SANS Common Security Errors in Programming map illustrates the software weaknesses that are responsible
for the majority of the publicly known vulnerabilities reported in the Common Vulnerabilities and Exposures
(CVE) and discovered in self-developed applications. It is based on the CWE (Common Weakness Enumeration)
that provides a uni!ed, measurable set of software weaknesses that will enable more e"ective discussion and
action to !nd these weaknesses in source code and eliminate them. The CWE was developed by MITRE and spon-
sored by the Department of Homeland Security. The numbers between parentheses represent the CWE IDs for
each weakness on the “2009 CWE/SANS Top 25 Most Dangerous Programming Errors” list. CWE IDs can be found
at the MITRE CWE Website or accessed directly by putting the number (in place of ###) in the following URL:
http://cwe.mitre.org/data/definitions/###.html

Special thanks to the CWE Team at MITRE. 2009’s CWE/SANS Top 25 Most
Dangerous Programming Errors

To get your free

vendor-sponsored

whitepapers, visit

www.sans.org/tools.php

www.toplayer.com

Guide to Using Network IPS to
Protect Against Next-Generation

Cyber Threats

www.coresecurity.com

Building a Web Application
Security Program

www.netforensics.com

Event Correlation Matters:
Practical Automated Solutions for

Protecting Critical Data

www.netwitness.com

Advanced Threat Detection
within Financial Services

www.norman.com

Norman Network Protection:
Assessing Security Threats Instanta-
neously & Defending Your Network

www.paloaltonetworks.com

It’s Time to Fix The Firewall

www.sourcefire.com

What’s New in Source!re
3D System 4.9

www.nubridges.com

Best Practices in Encryption, Key
Management and Tokenizattion

Free
Vendor-Sponsored

Whitepapers

Data Handling

Insu!cient Encapsulation
Mobile Code Issues
 • Public cloneable() Method Without Final (‘Object Hijack’)
 • Use of Inner Class Containing Sensitive Data
 • Critical Public Variable Without Final Modi!er
 • Download of Code Without Integrity Check - (494)
 • Array Declared Public, Final, and Static
 • !nalize() Method Declared Public

Leftover Debug Code

Use of Dynamic Class Loading

clone() Method Without super.clone()

Comparison of Classes by Name

Data Leak Between Sessions

Trust Boundary Violation

Reliance on Package-level Scope

J2EE Framework: Saving Unserializable Objects to Disk

Deserialization of Untrusted Data

Serializable Class Containing Sensitive Data

Information Leak through Class Cloning

Public Data Assigned to Private Array-Typed Field

Private Array-Typed Field Returned From A Public
Method

Public Static Final Field References Mutable Object

Exposed Dangerous Method or Function

Critical Variable Declared Public

Access to Critical Private Variable via Public Method

Security Features

Indicator of Poor Code Quality
NULL Pointer Dereference

Incorrect Block Delimitation

Omitted Break Statement in Switch

Undefined Behavior for Input to API

Use of Hard-coded, Security-relevant Constants

Unsafe Function Call from a Signal Handler

Suspicious Comment

Return of Stack Variable Address

Missing Default Case in Switch Statement

Expression Issues

Use of Obsolete Functions

Use of Function with Inconsistent Implementations

Unused Variable

Dead Code

Resource Management Errors

Improper Resource Shutdown or Release - (404)

Empty Synchronized Block

Explicit Call to Finalize()

Reachable Assertion

Use of Potentially Dangerous Function

Web Problems
Failure to Sanitize CRLF Sequences in HTTP Headers
(‘HTTP Response Splitting’)

Inconsistent Interpretation of HTTP Requests
(‘HTTP Request Smuggling’)

Improper Sanitization of HTTP Headers for Scripting
Syntax

Use of Non-Canonical URL Paths for Authorization
Decisions

Time and State
State Issues

 • Incomplete Internal State Distinction
 • State Synchronization Error
 • Mutable Objects Passed by Reference
 • Passing Mutable Objects to an Untrusted Method
 • External Control of Critical State Data - (642)
 • Race Condition - (362)

Session Fixation

Concurrency Issues

Temporary File Issues

Covert Timing Channel

Technology-Specific Time and State Issues

Symbolic Name not Mapping to Correct Object

Signal Errors

Unrestricted Externally Accessible Lock

Double-Checked Locking

Insufficient Session Expiration

Insufficient Synchronization

Use of a Non-reentrant Function in an
Unsynchronized Context

Improper Control of a Resource Through its Lifetime

Exposure of Resource to Wrong Sphere

Incorrect Resource Transfer Between Spheres

Use of a Resource after Expiration or Release

External Influence of Sphere Definition

Uncontrolled Recursion

Redirect Without Exit

Failure to Ful"ll API Contract
(‘API Abuse’)

Failure to Clear Heap Memory Before Release
(‘Heap Inspection’)

Call to Non-ubiquitous API

Use of Inherently Dangerous Function

Multiple Binds to the Same Port

J2EE Bad Practices: Direct Management of Connections

Incorrect Check of Function Return Value

Often Misused: Arguments and Parameters

Uncaught Exception

Execution with Unnecessary Privileges - (250)

Often Misused: String Management

J2EE Bad Practices: Direct Use of Sockets

Unchecked Return Value

Failure to Change Working Directory in chroot Jail

Reliance on DNS Lookups in a Security Decision

Failure to Follow Specification

Failure to Provide Specified Functionality

Channel and Path Errors
Channel Errors

Failure to Protect Alternate Path

Uncontrolled Search Path Element

Unquoted Search Path or Element

Untrusted Search Path - (426)

Handler Errors
Deployment of Wrong Handler

Missing Handler

Dangerous Handler not Disabled During Sensitive
Operations

Unparsed Raw Web Content Delivery

Incomplete Identification of Uploaded File Variables
(PHP)

Unrestricted File Upload

Behavioral Problems
Behavioral Change in New Version or Environment

Expected Behavior Violation

User Interface Errors
UI Discrepancy for Security Feature

Multiple Interpretations of UI Input

UI Misrepresentation of Critical Information

Pointer Issues
Return of Pointer Value Outside of Expected Range

Use of size of() on a Pointer Type

Incorrect Pointer Scaling

Use of Pointer Subtraction to Determine Size

Assignment of a Fixed Address to a Pointer

Attempt to Access Child of a Non-structure Pointer

Error Handling
Error Conditions, Return Values, Status Codes

Failure to Use a Standardized Error Handling Mechanism

Failure to Catch All Exceptions in Servlet

Not Failing Securely (‘Failing Open’)

Missing Custom Error Page

Initialization and
Cleanup Errors

Insecure Default Variable Initialization

External Initialization of Trusted Variables

Non-exit on Failed Initialization

Missing Initialization

Incomplete Cleanup

Improper Cleanup on Thrown Exception

Improper Initialization - (665)

Numeric Errors

 • Use of Incorrect Byte Ordering

 • Unchecked Array Indexing

 • Incorrect Conversion between Numeric Types
 - Unexpected Sign Extension
 - Signed to Unsigned Conversion Error
 - Unsigned to Signed Conversion Error
 - Numeric Truncation Error

 • Incorrect Calculation - (682)
 - Incorrect Calculation of Bu!er Size
 - Integer Over"ow or Wraparound
 - Integer Under"ow (Wrap or Wraparound)
 - O!-by-one Error
 - Divide By Zero

Representation Errors

 • Cleansing, Canonicalization, and Comparison Errors

 • Reliance on Data/Memory Layout

Information Management Errors

 Information Leak (Information Disclosure)
 - Information Leak Through Sent Data
 - Privacy Leak through Data Queries
 - Discrepancy Information Leaks
 - Error Message Information Leak - (209)
 - Cross-boundary Cleansing Information Leak
 - Intended Information Leak
 - Process Environment Information Leak
 - Information Leak Through Debug Information
 - Sensitive Information Uncleared Before Release
 - Information Leak of System Data
 - Information Leak Through Caching
 - Information Leak Through Environmental Variables
 - File and Directory Information Leaks
 - Information Leak Through Query Strings in

GET Request
 - Information Leak Through Indexing of Private Data

 • Information Loss or Omission

 • Containment Errors (Container Errors)

Improper Access of Indexable Resource (‘Range Error’)

Type Errors

Improper Encoding or Escaping of Output - (116)

String Errors

Data Structure Issues

Improper Handling of Syntactically Invalid Structure

Modification of Assumed-Immutable Data (MAID)

 Improper Input Validation - (20)
 • Pathname Traversal and Equivalence Errors
 • Process Control
 • Missing XML Validation
 • Failure to Sanitize Data into a Di"erent Plane (‘Injection’)

 - Improper Sanitization of Special Elements used
in a Command (‘Command Injection’)

 • Improper Sanitization of Special Elements
used in an OS Command
(‘OS Command Injection’) - (78)

 - Failure to Preserve Web Page Structure
(‘Cross-site Scripting’) - (79)

 - Improper Sanitization of Special Elements used
in an SQL Command (‘SQL Injection’) - (89)

 - Failure to Sanitize Data into LDAP Queries
(‘LDAP Injection’)

 - XML Injection (aka Blind XPath Injection)
 - Failure to Sanitize CRLF Sequences (‘CRLF Injection’)
 - Uncontrolled Format String
 - Failure to Sanitize Special Elements into a

Di!erent Plane
 - Argument Injection or Modi#cation
 - Improper Control of Resource Identi#ers

(‘Resource Injection’)
 - Failure to Control Generation of Code

(‘Code Injection’) - (94)
 - Improper Sanitization of Special Elements

 • Technology-Speci!c Input Validation Problems
 • Misinterpretation of Input
 • Unchecked Input for Loop Condition
 • Null Byte Interaction Error (Poison Null Byte)
 •Direct Use of Unsafe JNI
 • Improper Output Sanitization for Logs
 • Failure to Constrain Operations within the Bounds

of a Memory Bu#er - (119)
 • Use of Externally-Controlled Input to Select Classes or

Code (‘Unsafe Re#ection’)
 • ASP.NET Miscon!guration: Not Using Input Validation

Framework
 • URL Redirection to Untrusted Site (‘Open Redirect’)
 • Variable Extraction Error
 • Unvalidated Function Hook Arguments
 • External Control of File Name or Path - (73)
 • Improper Address Validation in IOCTL with

METHOD_NEITHER I/O Control Code
 • Use of Path Manipulation Function without

Maximum-sized Bu"er

Cryptographic Issues
 • Key Management Errors

 • Missing Required Cryptographic Step

 • Not Using a Random IV with CBC Mode

 • Failure to Encrypt Sensitive Data
 - Cleartext Storage of Sensitive Information
 - Cleartext Transmission of Sensitive

Information - (319)
 - Sensitive Cookie in HTTPS Session Without

‘Secure’ Attribute

 • Reversible One-Way Hash

 • Inadequate Encryption Strength
 - Use of a Broken or Risky Cryptographic

Algorithm - (327)

 • Use of RSA Algorithm without OAEP

Permissions, Privileges, and Access Controls
 • Access Control (Authorization) Issues
 - Improper Access Control (Authorization) - (285)
 - Access Control Bypass Through User-Controlled Key
 - Use of Non-Canonical URL Paths for

Authorization Decisions

 • Permission Issues
 - Incorrect Default Permissions
 - Insecure Inherited Permissions
 - Insecure Preserved Inherited Permissions
 - Incorrect Execution-Assigned Permissions
 - Improper Handling of Insu$cient Permissions

or Privileges
 - Improper Preservation of Permissions
 - Exposed Unsafe ActiveX Method
 - Incorrect Permission Assignment for Critical

Resource - (732)
 - Permission Race Condition During Resource Copy

 • Privilege / Sandbox Issues

 • Improper Ownership Management

 • Incorrect User Management

Password in Configuration File

Insufficient Compartmentalization

Reliance on a Single Factor in a Security Decision

Insufficient Psychological Acceptability

Reliance on Security through Obscurity

Protection Mechanism Failure

Insufficient Logging

Credentials Management

 • Hard-Coded Password - (259)
 • Unveri!ed Password Change
 • Missing Password Field Masking
 • Weak Cryptography for Passwords
 • Weak Password Requirements
 • Not Using Password Aging
 • Password Aging with Long Expiration
 • Insu$ciently Protected Credentials
 • Weak Password Recovery Mechanism for Forgotten

Password

Insufficient Verification of Data Authenticity
 • Origin Validation Error
 • Improper Veri!cation of Cryptographic Signature
 • Use of Less Trusted Source
 • Acceptance of Extraneous Untrusted Data With

Trusted Data
 • Improperly Trusted Reverse DNS
 • Insu$cient Type Distinction

 • Cross-Site Request Forgery (CSRF) - (352)
 • Failure to Add Integrity Check Value
 • Improper Validation of Integrity Check Value
 • Trust of System Event Data
 • Reliance on File Name or Extension of Externally-

Supplied File
 • Reliance on Obfuscation or Encryption of Security-

Relevant Inputs without Integrity Checking

Privacy Violation

Reliance on Cookies without Validation and Integrity
Checking in a Security Decision

Reliance on Cookies without Validation and Integrity
Checking

Client-Side Enforcement of Server-Side Security - (602)

Improperly Implemented Security Check for Standard

Improper Authentication

User Interface Security Issues

Use of Insu!ciently Random Values - (330)

Logging of Excessive Data

Certificate Issues

Security Decision

https://portal.sans.org/tools.php

